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Abstract—In this paper, we address the problem of energy effi-
ciency in ad hoc wireless networks. We consider a network that
is shared by a set of sources, each one communicating with its
corresponding destination using multiple routes. Each source is
associated with a utility function which increases with the total
traffic flowing over the available source-destination routes. The
network lifetime is defined as the time until the first node in the
network runs out of energy. We formulate the problem as one of
maximizing the sum of the sources’ utilities subject to the required
constraint on network lifetime. We present a primal formulation
of the problem, which uses penalty functions to take into account
the system constraints, and we introduce a new methodology for
solving the problem. The proposed approach leads to a flow con-
trol algorithm, which provides the optimal sources’ rate and can
be easily implemented in a distributed manner. When compared
with the minimum transmission energy routing scheme, the pro-
posed algorithm gives significantly higher sources’ rates for same
network lifetime guarantee.

I. INTRODUCTION

THE convergence of various technologies has made ubiqui-
tous wireless access a reality and enabled wireless systems

to support a large variety of applications, from Internet-based
services to remote sensing.

We deal with ad hoc networks composed of battery-powered
nodes, which communicate with each other using multihop
wireless links. Each network node acts also as a router, for-
warding data packets to other nodes. Since batteries can sup-
ply only a finite amount of energy, a major challenge in such
networks is minimizing the nodes’ energy consumption, which
depends on the power spent by the nodes to transmit, receive,
and process traffic. Clearly, a trade-off between energy con-
sumption and traffic performance (e.g., throughput and delay)
exists.

Several papers have addressed the issue of energy consump-
tion in wireless ad hoc networks by proposing energy-aware
routing algorithms [1], [2], [3], [4], [5], [6]. In particular, in
[1] the so-called MTE (Minimum Transmission Energy) rout-
ing scheme is presented, which selects the route that uses the
least amount of energy to transport a packet from the source to
the destination. In [4], the concept of network lifetime is first
defined as the period from the time instant when the network
starts functioning to the time instant when the first node runs
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out of energy. The objective there is to maximize the network
lifetime while guaranteeing the required traffic rate.

In this paper, we consider an ad hoc network composed of
wireless nodes, each of which may have a different initial en-
ergy. The network is shared by a set of traffic sources and
each source has a unique destination for all its data. Sources
do not require a fixed bandwidth but can adjust their transmis-
sion rates to changes in network conditions (e.g., as in the case
of Internet-based applications using TCP). Each source knows
the set of routes that can be used to reach its destination; the
possible routes can be discovered by applying a source routing
algorithm, as in [7]. The advantage of using multiple paths is
twofold: (i) It provides an even distribution of the traffic load,
i.e., energy drain, over the network. (ii) In case of route disrup-
tion, the source is still able to send data to the destination by
using the functioning routes.

Considering this scenario, we pose the following problem:
given a required network lifetime, what is the most beneficial
source rate allocation and flow control strategy?

To answer this question, we draw upon previous work on
congestion pricing in wired networks [8], [9], [10], [11], [12],
[13], [14]. Their approach consists in deriving the control
schemes for the sources’ traffic rate as solutions of an optimiza-
tion problem. Each traffic source is associated with a utility
function increasing in its transmission rate and subject to band-
width constraints; the network objective is to maximize the sum
of source utilities. The network problem is decomposed into
several sub-problems each of them corresponding to a single
traffic source. In [9], [10], it is shown that when a single path
between a traffic source and its destination is considered and the
objective function is strictly concave, solving the single source
sub-problems is the same as solving the global network prob-
lem. In [13], [15], [16], the multipath case is addressed. Solv-
ing the optimization problem in the multipath case becomes
more difficult because, even if the objective functions of the
source sub-problems are strictly concave, the overall objective
function may not be so. Hence, extensions of the approaches
adopted for the single path case do not provide convergence to
an optimal solution of the global network problem. Solutions
to approximate versions of the problem are presented in [13],
while an exact formulation is solved in [16].

In this paper, we use an optimization approach to address the
problem of energy efficiency in ad hoc wireless networks. The
network lifetime, as defined in [4], and the traffic rate over the
available routes between each source-destination pair, are taken
as measures of the network performance. Each source is associ-
ated with a utility function which increases with the traffic flow-
ing over the available source-destination routes. We consider a
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primal formulation of the network optimization problem, where
the objective is maximizing the sum of the sources’ utilities for
a required network lifetime guarantee. Then, in order to solve
the problem in the multipath case, we present a new formula-
tion, which makes use of penalty functions to take into account
the system constraints [17]. We prove that the optimal solution
of the proposed formulation converges to an optimal solution
of the original problem and we show that the optimal solution
can be obtained by applying a gradient descent method. By
using the gradient descent technique, we devise a distributed
flow control algorithm, named ORSA (Optimal Rate Splitting
and Allocation), that quickly converges to the optimal sources’
rates.

The performance of the ORSA scheme is compared against
the performance of the MTE algorithm [1]. Results show that,
given the desired network lifetime, the ORSA algorithm allows
for much higher sources’ rates than the MTE scheme when (i)
the source density in the network is less than 0.5 or (ii) the
energy resources are unevenly distributed among the nodes.
By increasing the number of available source-destination paths,
higher sources’ rates can be achieved. Results also suggest that
an optimal number of source-destination routes can be found,
that allows for high sources’ rates while keeping the system
complexity low.

The remainder of the paper is organized as follows. Section II
describes the system model and a mathematical representation
of the flow control problem. Section III introduces the method-
ology proposed for solving the optimization problem. Section
IV provides numerical results; and, Section V reviews some re-
lated work. Finally, Section VI concludes the paper.

II. THE FLOW CONTROL PROBLEM

In this section, we first introduce the notation and assump-
tions that we use to model the system under study. Then, a
mathematical representation of the network optimization prob-
lem is given, which takes into account both the sources’ traffic
rates and the network lifetime.

A. Notation and Assumptions

We model an ad hoc network with a set N of stationary wire-
less nodes; we indicate the number of nodes by |N | = N . Let
the network be shared by a set S of sources, and let D be the set
of destination nodes in the network; for the sake of simplicity,
we assume that each source has a unique destination for all its
traffic.

A path or a route, r ⊂ N , is a subset of nodes. Let R be the
set of routes. Let R(i), i ∈ N , be the set of routes that contain
node i, RS(s), be the set of routes starting at node s, s ∈ S,
and RD(d), be the set of routes that end at node d, d ∈ D.
We define NS(s), s ∈ S, as the set of nodes belonging to any
route in RS(s). For each source, we assume that the set of
all possible routes toward the destination is known through a
source routing algorithm such as the one proposed in [7].

Given a route r and a node i ∈ r, we let fri be the node
immediately succeeding node i on route r. The energy required
to transmit one unit flow from node i to the generic node j is
denoted by e

(tx)
ij . We say that e(tx)

ij = ∞ if no communication

link exists between i and j. This parameter depends on the
distance between nodes i and j, channel conditions, antenna
gains, and receive/transmit powers.

Let xs be the traffic rate that is associated with source s, s ∈
S and is split by s on its |RS(s)| routes. Let yr, r ∈ RS(s)
be the flow on route r, i.e., the fraction of traffic rate xs routed
through r; we have

xs =
∑

r∈RS(s)

yr . (1)

Next, we assume that each node has a limited amount of
available energy and denote by Ei the energy available at node
i, i ∈ N . We consider that energy costs are incurred in transmit
and receive mode, while energy consumption due to traffic pro-
cessing is neglected. The energy consumed per unit flow while
receiving, denoted by e(rx), is assumed to be constant. Let γi

be the power consumed by node i, i ∈ N . Then,

γi =
∑

r∈RS(i)

yre
(tx)
ifri

+
∑

r∈RD(i)

yre
(rx)

+
∑

r ∈ R(i)
r /∈ RS (i) ∪ RD(i)

yr

(
e(rx) + e

(tx)
ifri

)
(2)

where the first term on the right hand side is the power con-
sumed to transmit the traffic generated by node i, the second
term represents the power spent to receive the traffic of which
i is the destination, and the third term is the transmission and
reception cost due to the traffic that is relayed through i.

We define the network lifetime, L, as the time until the first
node in the network runs out of energy, as first defined in [4].
By denoting by Li the lifetime of node i, the network lifetime
can be written as

L = min
i∈N

Li . (3)

Let Lg be the required guarantee on the network lifetime.
Then, the maximum energy consumption per unit time, or
equivalently the maximum power consumption, allowed at
node i is equal to

Γi =
Ei

Lg
. (4)

By limiting the nodes’ power consumption to Γi, we ensure
that the network lifetime is at least equal to Lg . We define the
‘congestion’ of node i, denoted by Yi, as

Yi =
γi

Γi
. (5)

When the power consumption of node i is equal to its maximum
allowed value, Γi, we have Yi = 1.

Observe that when a constraint on the level of the nodes’
output power exists, Γi can be viewed as the maximum allowed
value of transmission power.

B. Problem Statement

The optimization approach consists in deriving control mech-
anisms for the sources’ traffic rates as solutions of an optimiza-
tion problem. Different flow control algorithms can be obtained
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by varying the problem objective function or the solution ap-
proach. Below, we present the objective function to be max-
imized in our network problem, along with the constraints on
the system variables that were introduced in the previous sec-
tion.

For each source s, s ∈ S, we define a utility function

Vs


 ∑

r∈RS(s)

yr


 (6)

where Vs : R+ → R+ depends solely on the rate allo-
cated to source s, with

∑
r∈RS(s) yr = xs, and is assumed

to be strictly concave, continuous, bounded and increasing in
xs, xs ∈ [0,∞). Since the goal of the network is to maximize
the utility of all sources while providing the desired lifetime,
the centralized network problem can be written as

max
yr,r∈R

∑
s∈S

Vs


 ∑

r∈RS(s)

yr


 (7)

subject to yr ≥ 0 ∀r ∈ R∑
r∈RS(s) yr ≤ Ms ∀s ∈ S

Yi ≤ 1 ∀i ∈ N .

The first constraint emphasizes the non-negativity of the traffic
rates. The second constraint says that the rate at each source
s, s ∈ S must be less than a maximum value Ms. Ms de-
pends on the characteristics of the system and/or the applica-
tion requirements; a minimum rate requirement can be similarly
specified. The third condition ensures that the network lifetime
guarantee is met, i.e., the power consumption of any node in the
network is always less than the maximum allowed consumption
rate.

III. A PENALTY FUNCTION-BASED APPROACH

The objective function in (7) is strictly concave in xs but is
not strictly concave in {xs, yr}, thus a unique solution does
not exist and the dual function is not differentiable. In this
case, simple solution approaches based on the gradient descent
method are not directly applicable [18].

Here, we propose a novel approach to solve (7), which uses
exact penalty functions. A penalty function is said to be exact
if a constrained nonlinear programming problem can be solved
by a single minimization of an unconstrained problem [19]. We
consider the following unconstrained optimization problem

P0 :

max
yr,r∈R

∑
s∈S

Vs


 ∑

r∈RS(s)

yr


 −

∑
i∈N

p(Yi − 1)

−
∑
s∈S

p(xs −Ms) −
∑
r∈R

p(−yr) (8)

where Yi is the congestion of node i and p(t) is a scalar penalty
function p : R → R given by

p(t) =
{

e(αt) − 1 t ≥ 0
0 t < 0 .

(9)

It is easy to verify that the function p(t) defined in (9) satisfies
the following assumptions:

1. p is convex

2. p(t) = 0 ∀t ≤ 0

3. p(t) > 0 ∀t > 0 .

(10)

Then, we show that (9) is an exact penalty function, by using
the result below [17, Prop. 1].

Theorem 1: Let ỹ be the solution of problem (8).
(a) A necessary condition for ỹ to be an optimal solution of
problem (7) is that

lim
t→0+

p(t)
t

≥ λi ∀λi ∈ λ (11)

for some Lagrange multiplier vector λ = {λi} of (7).
(b) A sufficient condition for problems (7) and (8) to have the
same solution is

lim
t→0+

p(t)
t

> λi ∀λi ∈ λ (12)

for some Lagrange multiplier vector λ = {λi}.
We note that for sufficiently large values of α, part (b) of the
theorem will be satisfied for any network. Thus, by solving the
unconstrained problem given by (8), we also obtain a solution
to (7).

A. Solving the Penalty Function-based Problem

The penalty function in (8) is not strictly convex, conse-
quently neither is the objective function in P0. This implies
that problem P0 does not have a unique solution and that the
objective function is not differentiable; hence a gradient de-
scent method can not be used to solve problem (8). An op-
timal solution, however, can be found by constructing a se-
quence of strictly concave and differentiable optimization prob-
lems whose solutions converge to an optimal solution of P0.
Since these problems are strictly concave and differentiable,
they possess a unique solution that can be obtained by apply-
ing the gradient descent method [18]. Other optimal solutions
to P0 can be attained by selecting different penalty functions or
different sequences of optimization problems.

Consider a function pn(t) defined as follows

pn(t) =
{

e(αt) − 1 + 1
n t ≥ 0

e(αtn)/n t < 0 .
(13)

Note that pn(t) is strictly convex and differentiable in t ∈
[−∞,∞). Now, consider the problem

Pn :

max
yr,r∈R

∑
s∈S

Vs


 ∑

r∈RS(s)

yr


 −

∑
i∈N

pn(Yi − 1)

−
∑

s∈RS(s)

pn(xs −Ms) −
∑
r∈R

pn(−yr). (14)
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Notice that the contribution of each node to the sum in the sec-
ond term of (14) is equal to (less than) 1 when the node’s power
consumption is equal to (less than) its maximum allowed value,
i.e., when Yi = 1 (Yi < 1). Also, the greater the power con-
sumption, the higher the value of the penalty function.

The objective function of Pn is strictly concave. In fact,
since pn(−yr) is strictly convex in yr, the last term in (14) is
strictly concave in {yr}. As mentioned earlier, this implies that
Pn has a unique solution and is differentiable; hence the solu-
tion can be obtained by the gradient descent method. All that
we need to show is that the sequence of solutions {yn} con-
verges to ỹ, i.e., the solution to (8).

Let q(n) be the optimal value of problem Pn. Then, we have
the following lemma.

Lemma 1: q(n) is an increasing sequence.
Proof:

q(n) =
∑
s∈S

Vs

(
x(n)

s

)
−

∑
i∈N

pn

(
Y

(n)
i − 1

)

−
∑
s∈S

pn

(
x(n)

s −Ms

)
−

∑
r∈R

pn

(
−y(n)

r

)
. (15)

Here
{
x

(n)
s

}
and

{
y
(n)
r

}
are the optimal rates for problem Pn

and Y
(n)
i is the corresponding congestion of node i. We have

pn(t) > pn+1(t) . (16)

This implies that

q(n) <
∑
s∈S

Vs

(
x(n)

s

)
−

∑
i∈N

pn+1

(
Y

(n)
i − 1

)

−
∑
s∈S

pn+1

(
x(n)

s −Ms

)
−

∑
r∈R

pn+1

(
−y(n)

r

)

≤ q(n + 1) (17)

where the first inequality follows from (16), while the second
inequality follows from the definition of q(n) in (15).

Note that q(n) is bounded above by V ∗, i.e., the value of (8).
Since {qn} is a monotonically increasing bounded sequence, it
has a limit q∗ and q∗ ≤ V ∗. It remains to show that q∗ = V ∗.

Fix any ε > 0. For sufficiently large n we have

pn(t) < p(t) +
ε

3|R| . (18)

This implies that

qn = max
yrr∈R

∑
s∈S

Vs(xs) −
∑
i∈N

pn(Yi − 1)

−
∑

s∈RS(s)

pn(xs −Ms) −
∑
r∈R

pn(−yr)

>
∑
s∈S

Vs(x̃s) −
∑
i∈N

pn(Ỹi − 1)

−
∑
s∈S

pn(x̃s −Ms) −
∑
r∈R

pn(−ỹr) . (19)

Here {x̃s} and {ỹr} are the optimal rates for problem (8), and
Ỹi is the corresponding congestion of node i. Thus,

qn >
∑
s∈S

Vs(x̃s) −
∑
i∈N

p(Ỹi − 1)

−
∑
s∈S

p(x̃s −Ms) −
∑
r∈R

p(−ỹr) − ε

≥ V ∗ − ε . (20)

Since ε is arbitrary, we have q∗ = V ∗.

B. The ORSA Algorithm

As discussed in the previous section, the solution to prob-
lem (8) can be approached as closely as desired by choosing a
sufficiently large value for n. Moreover, it was shown that the
solution to problem Pn can be obtained by applying the gradi-
ent descent method. In the following, we present a distributed
implementation of this algorithm, the so-called ORSA (Optimal
Rate Splitting and Allocation) algorithm.

We consider the utility function for the generic source s, s ∈
S, as [13]

Vs(xs) = log(1 + xs) . (21)

Observe that Vs increases as the source rate increases; the log
function is used in the expression of the source utility because
it ensures proportional fairness.

Problem Pn can be therefore rewritten as

Pn :

max
yr,r∈R

∑
s∈S

U (n)
s

(
xs,

{
Yk, k ∈ NS(s)

})
(22)

with

U (n)
s

(
xs,

{
Yk, k ∈ NS(s)

})
=

log(1 + xs) − 1
|S|

∑
i∈N

pn(Yi − 1)

−pn(xs −Ms) −
∑

r∈RS(s)

pn(−yr) . (23)

The optimal solution of (22) must satisfy the first order con-
ditions [18]

∂U
(n)
s

∂yr
= −

∑
k∈NS(s)

∂U
(n)
s

∂Yk

∂Yk

∂yr

−
∑

z∈S\{s}

∑
k∈NS(z)

∂U
(n)
z

∂Yk

∂Yk

∂yr

= ws
r(n) + wr(n)

∀r ∈ RS(s) ∀s ∈ S . (24)

In (24), the left hand side represents the marginal increase in
utility for source s if s increases its rate on route r by a small
amount. The first term on the right hand side represents the
marginal decrease in source s’s utility due to the increase in
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yr; this term is denoted by ws
r(n). The second term on the right

hand side represents the marginal decrease in utility for all other
sources; we denote this term by wr(n). Hence, (24) says that
each source node must increase the flow on each route, until the
marginal increase in its utility is equal to the marginal decrease
in the utility imposed on all nodes in the system.

In order to obtain the optimal solution in a decentralized fash-
ion, we consider that each source s, s ∈ S solves the following
problem [8],

Ps
n :

max
yr,r∈RS(s)

U (n)
s

(
xs,

{
Yk, k ∈ NS(s)

})

−
∑

r∈RS(s)

wr(n)yr . (25)

Indeed, the above maximum is obtained when

∂U
(n)
s

∂yr
= −

∑
k∈RS(s)

∂U
(n)
s

∂Yk

∂Yk

∂yr
+ wr(n)

= ws
r(n) + wr(n) ∀r ∈ RS(s) (26)

which is the same condition as the one expressed in (24). This
shows that, by solving sub-problem Ps

n for each s ∈ S, we can
attain the global optimum for Pn in a decentralized fashion.

Next, we introduce the distributed algorithm to be performed
at each source s, in order to solve Ps

n. By applying the gradient
descent method, each source needs to compute the gradient of
its utility function with respect to yr, r ∈ RS(s). For each route
r ∈ RS(s), the source algorithm is as follows.

Source Algorithm

1) Evaluate gradient (∇r) on route r

∇r = ∂U(n)
s

∂yr
− ws

r(n) − wr(n)

with U
(n)
s as in (23)

2) yr(t) = yr(t− 1) + ∇rε /*update flow rate over r*/

where ε > 0 is a scaling parameter that determines the step size
for the gradient descent algorithm and t is the current update
time. Notice that the source does not require ws

r(n) and wr(n)
separately, but ws

r(n) + wr(n).
Let route r be defined by {i0, i1, . . . , il}, where i0 is the

source and il is the destination node and the others are inter-
mediate nodes. The algorithm to compute ws

r(n) + wr(n) for
each route r, r ∈ RS(s), is given below.

Route Algorithm

1) j = 0, ws
r(n) = 0, wr(n) = 0

2) At node il−j /*update ws
r(n) + wr(n)*/

ws
r(n) + wr(n) = ws

r(n) + wr(n)

+|R(il−j)|∂pn(Yil−j
−1)

∂Yil−j

∂Yil−j

∂yr

3) Relay ws
r(n) + wr(n) to node il−j−1

j = j + 1
if (l − j �= 0)

Goto Step 2
end if

Step 2 is derived from (24); each contribution is obtained by
fixing node index k in (24) and summing over all the sources
whose routes include k.

Note that, since we are applying the gradient descent method,
convergence is guaranteed [20]. The proposed algorithm lies
on the assumption that variable updates are perfectly synchro-
nized; however, we believe that the algorithm will still converge
in the case where the update mechanism is asynchronous. We
will address this issue in future research.

IV. NUMERICAL RESULTS

We consider the topology shown in Figure 1, which has been
obtained by randomly distributing N nodes over a Q × Q re-
gion, with N = 20 and Q = 1. We assume that each node is
characterized by a different maximum allowed power consump-
tion, Γi with i = 1, . . . , N . Recall from (4) that Γi’s depend
on the nodes’ initial energy and the required network lifetime.
We assume that Γi’s are uniformly distributed random variables
with mean equal to 0.75. The normalized value of energy con-
sumed per unit flow in receive mode is assumed to be constant
and equal to 0.01; while, the energy spent to transmit a unit
flow depends on the distance between the transmitting and the
receiving node. Using the DSR algorithm [7], we find multiple
routes between each source-destination pair. The plots shown
in the following are derived by averaging the results over 10
different runs, each of them corresponding to a different set of
sources randomly chosen among the network nodes and differ-
ent instances of the random variables Γi’s.
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Fig. 1. Network topology with N = 20.

Figure 2 presents the average source rate as a function of the
number of sources in the network and compares the results ob-
tained through the ORSA algorithm with the performance of
the MTE scheme. For each source-destination pair, up to five
available routes are considered; the MTE scheme always se-
lects the route with the minimum energy cost among the avail-
able ones. Results are derived for two different distributions of
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Fig. 2. Average source rate as a function of the number of sources for max-
imum number of available source-destination routes equal to 5. The perfor-
mance of the ORSA algorithm is compared to the results obtained through the
MTE algorithm for two different values of variance of the nodes’ maximum
allowed power consumption.
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Fig. 3. Average convergence time of the rate allocation algorithm as a function
of the number of sources in the network for maximum number of available
source-destination routes equal to 5. The performance of the ORSA algorithm
is compared to the results obtained through the MTE algorithm for two different
values of variance of the nodes’ maximum allowed power consumption.

the maximum allowed power consumption. Curves labeled in
the plot by Var1 refer to the case where Γi’s are uniformly dis-
tributed between 0.5 and 1, thus resulting in a variance in the
nodes’ maximum allowed power consumption roughly equal to
0.02. Curves labeled by Var2 refer to the case where Γi’s are
uniformly distributed with mean equal to 0.75 and variance of
about 0.04. This corresponds to a variance of the nodes’ initial
energy in the Var2 case being twice the variance in the Var1
case.

Figure 2 shows that the ORSA algorithm significantly out-
performs the MTE scheme as long as the number of sources
that are simultaneously active does not exceed half the total
number of nodes in the network. For higher values of source
density, the ORSA and MTE algorithms perform equally well.
Interestingly, as the variance in the distribution of the nodes’
initial energy increases, the gain of the ORSA scheme over
the MTE algorithm increases. This suggests that a multipath
scheme would be preferable when (i) the density of simultane-
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source-destination routes for S = 4. The performance of the ORSA algorithm
is compared to the results obtained through the MTE algorithm.
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Fig. 5. Average of the normalized residual lifetime of the network nodes
when the first node runs out of energy as a function of the maximum number of
available source-destination routes. The performance of the ORSA algorithm
is compared to the results obtained through the MTE algorithm for S = 4.

ously active sources in the network is not very high or (ii) the
energy resources are unevenly distributed among the network
nodes. Otherwise, a single path routing scheme that has a lower
complexity may be more desirable.

Under the same system assumptions, we derive the conver-
gence time of the ORSA and MTE schemes, expressed as the
number of algorithm iterations. Figure 3 shows that the MTE
algorithm always outperforms the ORSA scheme; however, the
gap in performance significantly decreases as the variance in
the nodes’ available energy becomes larger (curves labeled in
the plot by Var2). Figure 3 also shows that the convergence
time grows with the increase of the number of sources; in fact,
greater the number of sources, the more likely it is that the traf-
fic flow through the network nodes is changed at each iteration.

Figures 4–6 are derived by considering four active sources
and varying the maximum number of available source-
destination routes between 1 and 10.

Figure 4 compares the average source rate obtained through
the ORSA and MTE schemes for the two cases, Var1 and Var2,
as described above. The average source rate increases with the
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Fig. 6. Variance of the normalized residual lifetime of the network nodes
when the first node runs out of energy as a function of the maximum number of
available source-destination routes. The performance of the ORSA algorithm
is compared to the results obtained through the MTE algorithm for S = 4.

number of available routes. In fact, as the number of paths
between each source-destination pair increases, a larger set of
energy resources becomes available for optimization. When
only one route is available, the ORSA and the MTE algorithms
are the same. Instead, when the number of available routes is
greater than one, 20–30% improvement can be obtained by the
ORSA scheme over the MTE scheme. Also, Figure 4 shows
that as the number of available routes increases beyond a certain
threshold, the improvement in performance becomes marginal.
This suggests that an optimal number of source-destination
routes can be found, that allows for high sources’ rates while
keeping the system complexity low.

Next, in order to gain an insight into the dynamics of energy
consumption, we study the residual lifetimes of the nodes at the
end of the network’s lifetime. Figures 5 and 6 present the mean
and variance of the residual lifetime of the nodes, normalized
to the desired network lifetime, Lg . With the MTE scheme, the
mean and variance of the residual lifetimes are higher than that
obtained through the ORSA scheme. This shows that the ORSA
algorithm balances the load in the network, which results in a
more equitable use of energy resources.

V. RELATED WORK

Optimization based flow control schemes have been previ-
ously proposed in [8], [9], [10], [11], [12], [13], [14], [15], [16]
in the context of wired networks.

Most of the work on flow control has been done under
the assumption that a single path exists between each source-
destination pair. In [9], [10], [13], each traffic source is asso-
ciated with a utility function increasing in its transmission rate
and subject to bandwidth constraints; the network objective is
to maximize the sum of source utilities. The network problem
is decomposed into several sub-problems each of them corre-
sponding to a single traffic source. By introducing the notion of
resource price and setting the price value according to the re-
source congestion level, source nodes can adjust their transmis-
sion rates so that the optimal trade-off between utility value and
the price they have to pay for the network resources is achieved.

While in [9], [13] sources select a willingness to pay and the
network allocates the traffic rates, in [10] the sources determine
their rates and pay the corresponding price. The two approaches
correspond to a primal and a dual formulation of the optimiza-
tion problem, respectively.

In [15], the same approach as in [10] is applied to the
multipath case. The network fixes the price for each source-
destination path and the source sends all its traffic on the route
with the minimum price. The sources’ rates, that are deter-
mined through this algorithm, are optimal only when the objec-
tive function of the dual problem is evaluated in the minimum
price vector [20]. However, even in this case it is hard to obtain
the optimal solution for the primal problem from the optimal
solution for the dual problem due to the lack of strict concav-
ity of the dual objective function. The optimal dual solution
may yield multiple primal solutions, and some of them can be
infeasible [16],[18, Chap. 6].

In [8], the authors apply the economic theory of pricing of
congestible resources to a networking context. They detail the
use of congestion pricing to efficiently allocate a single network
resource among many users, and extend their work to differ-
ent economic scenarios such as monopolistic and competitive
environments. The focus there is on sharing a single network
resource such as a ftp server or a router.

An algorithm based on a primal formulation of the rate
control problem for the single-path case is presented in [14],
and it is generalized to the multipath case in [16]. An ex-
act solution is derived, which optimizes both flow control and
routing in wired networks. In this case the congestion of
the network resources is indicated through a binary variable
(1 =“congested”, 0 =“not congested”). This approach is not
suitable in a wireless context for the following reasons. In a
wired capacitated network, each link is as good as any other,
i.e., the design of a wired network ensures that the effort re-
quired to transmit a bit on any link is the same. On the contrary,
in a wireless scenario, distance between the nodes determines
the transmit effort. From an optimization viewpoint, in a wired
context the Lagrange multipliers of the optimization problem
are the price per unit flow. In a wireless context, these multi-
pliers can be thought of as price per unit flow per unit distance.
Thus, using binary indicators of congestion, as done in [14],
[16], is not sufficient.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we jointly addressed the problem of flow con-
trol and energy efficiency in wireless ad hoc networks. We con-
sidered a network scenario where multiple routes between each
source-destination pair are known to the source. We associ-
ated to each source node a utility function which increases with
the traffic flowing over the available source-destination routes,
and we formulated the problem as one of maximizing the sum
of the source utilities for a required network lifetime guaran-
tee. We proposed a new methodology for solving the problem,
that converges to the optimal solution. This technique enabled
us to apply the gradient descent method and derive a simple
and distributed flow control algorithm that provides the optimal
sources’ rates. In order to study the performance of the pro-
posed algorithm, named ORSA, we compared it with the MTE
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scheme. We found that under the required constraint on net-
work lifetime, the ORSA algorithm significantly outperforms
the MTE algorithm when the source density in the network is
less than 0.5. By increasing the number of available source-
destination paths, higher sources’ rates can be achieved. Re-
sults also suggest that an optimal number of source-destination
routes can be found, that allows for high sources’ rates while
keeping the system complexity low.

The definition of lifetime that we considered allowed us to
gain some insight in the interplay between energy efficiency
and throughput. However, this definition is not completely sat-
isfactory as it does not address some key issues of ad hoc net-
works. For instance, the death of a single node does not com-
pletely disrupt the communication between the various source-
destination pairs. A more natural definition of network lifetime
would be the time until no communication is feasible between
some source-destination pair. With this definition, however, it is
no longer straightforward to pose the problem in an analytically
tractable manner. It will also become necessary to consider a
time varying topology. Also, a common lifetime guarantee for
the whole network may be unfair. The fact that some nodes
can be unduly burdened in relaying other nodes’ traffic may be
highly undesirable for some network applications and device
characteristics. Therefore, we believe that devising appropri-
ate performance metrics and designing algorithms that ensure
a more equitable network behavior, are important aspects that
still need to be addressed in future research.
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